+7(915)974-74-20 | tp@interlaser.ru |  Корзина

Лазерная резка может разделить любой материал идеально точной линией, в том числе лист стали или титана большой толщины. Самыми оптимальными способами являются лазерно-кислородная и кислородная. Лазерная резка в инертном газе применяется для расщепления особо твёрдых материалов, но имеет меньшую скорость. Также применяется лазерное термораскалывание для особо хрупких материалов и лазерная испарительная резка в микротехнологии.

 

Процесс лазерного раскроя с технологической точки зрения довольно-таки прост. Данная лазерная обработка различных материалов заключается в лазерном луче, который под воздействием струи сжатого газа разрушает поверхность материала. В результате получается разделение заготовки сверхточной линией реза.

Естественно, что для резки разнообразных материалов применяется и разнообразные степени интенсивности излучения: состав режущего газа и, конечно же, давление. Какие же бывают разновидности резки на лазерном оборудовании!?

Лазерно-кислородная резка

Лазерный раскройДля лазерно-кислородной резки исходным режущим газом является, несомненно, кислород. При взаимодействии кислорода с раскаленным металлом получается экзотермическая реакция окисления, при этом образовавшиеся окислы выдуваются также кислородом, причем той же струей.

К лазерно-кислородной резке можно отнести следующие особенности. Ширина реза напрямую зависит от скорости самого реза и соответственно от диаметра сфокусированного лазерного луча, который, как правило, меньше диаметра кислородной струи на 1-2 миллиметра. При этом при увеличении скорости раскроя и уменьшением толщины листа лазерный рез сужается.

От толщины листа металла зависит и давление в кислородной струе, причем в обратную сторону – чем меньше толщина, тем больше давление. Во время резки тонкого листа металла давление составляет от 3-х до 4-х атмосфер, а во время резки металлического листа толщиной 25 мм и более давление составляет всего лишь около 0.3 атмосферы.

От толщины обрабатывающего листа также напрямую зависит и зазор, между срезом сопла формирующий струю – от 0.5 мм (тонкий мет. лист) и до 3 мм (толстый мет. лист). Лазер мощностью в 6 кВт способен качественно разрезать металлический лист толщиной в 30 мм, однако стоит учесть, что эта толщина для лазерно-кислородного раскроя является максимальной. При максимальной толщине листа скорость раскроя составляет 0.5 м/мин. Но также стоит учесть, что при снижении этой скорости резки существенно падает качество реза.

Кислородная резка с поддержкой лазерным лучом

Лазерный раскройДля раскроя стальных листов большой толщины применение данной технологии является самым правильным решением. Эта технология представляет собой лазерный луч, задача которого в процессе резки только «нагревать» стальную поверхность до температуры приблизительно в 1000оС, затем на нагретый участок поверхности подается с невероятной (сверхзвуковой) скоростью струя кислорода. В результате получается идеальный раскрой толстого стального листа. Данная технология позволяет существенно увеличить глубину реза, если сравнивать с технологией лазерно-кислородной резки.

Для создания сверхзвуковой струи необходимо давление кислорода не меньше 6-ти – 10-ти атмосфер. Ширина реза, как правило, равна диаметру самой кислородной струи, что составляет 3 и более миллиметра. Во время раскроя необходимо учесть, что срез сопла обязательно должен быть отведен от обрабатываемой поверхности не менее чем на 7 мм. Конечно, при резке стали по этой технологии скорость реза значительно снижается до 0.2 м/мин. Соответственно в скорости резки эта технология уступает лазерно-кислородной. Однако это неудобство компенсируется возможностью разрезать материал до 100 мм, потому как при мощности лазера в 6 кВт достичь такую глубину реза вполне реально, что является неоспоримым фактом и, конечно же, преимуществом.

Лазерная резка в инертном газе

Лазерный раскройДанную технологию лазерного раскроя целесообразно применять в случаях, когда окисление кромок при резке металлических материалов крайне нежелательно, например, при резке: алюминиевых сплавов, титана или нержавеющей стали. Однако следует заметить, что при применении этого способа лазерной резки полностью отсутствует дополнительный источник прогрева, что естественно снижает эффективность самой резки.

Обычно в инертном газе используется – азот, а при раскрое титана – аргон. Но нужно учесть, что скорость резки сравнительно с другими технологиями низка. Также необходимо большое давление режущего газа в 10 и более атмосфер. Ширина разрезаемого материала напрямую влияет на диаметр сопла, что в свою очередь ощутимо сказывается на расходе режущего газа и соответственно стоимости конечного результата. Однако благодаря тому, что эти металлы относятся к дорогим по себестоимости материалам – окупаемость технологии лазерной резки в инертном газе весьма скоротечна и оправдана.

Лазерное термораскалывание

Эта лазерная технология применяется для идеально-ровного раскроя хрупких материалов, например – стекла. Лазерным лучом выполняется неравномерное нагревание обрабатываемого материала, который после этой процедуры охлаждается струей инертного газа. Данное действие приводит к появлению и формированию трещины. Благодаря тому, что источник нагрева по поверхности стекла передвигается, направление, и распространение трещин поддается управлению, что является несомненным плюсом этой технологии. В результате получается весьма и весьма гладкая и ровная грань раскроя.

Лазерная сублимационная (испарительная) резка

Данный метод лазерной резки преимущественно применяется в микротехнологии. Когда необходимо минимальное термическое влияние на материал подложки – этот метод лазерной технологии как нельзя кстати. Осуществляется это исключительно на очень высоких интенсивностях лазерного излучения, так сказать: (режим весьма коротких лазерных импульсов – пикосекундная и наносекундная длительность). При этом длина волны излучения этих лазеров, как правило, не менее 1 мкм. Такие же показатели имеют и эксимерные, твердотельные и лазеры на металлических парах. Процесс характеризуется минимальным коэффициентом полезного действия, то есть – КПД.

Как видно из выше всего перечисленного, технологические характеристики лазерных технологий имеют каждая свое предназначение. К примеру, лазерно-кислородная резка является самым распространенным методом раскроя. Другие же методы резки имеют каждый свой определенный специфический характер, который применяется в самых разных областях производства. С уверенностью можно добавить, что за лазерной технологий – будущее, ведь уже сейчас есть такие производственные проблемы, которые способны решить исключительно лазерные технологии.

 

 

 

Новости

Error: No articles to display

Статьи

Выберите надежные шаговые двигатели от Interlaser

24.10.2025 Статьи

  Шаговые двигатели | Interlaser - Точность и надежность Добейтесь идеальной точности вашего оборудования!   Правильно подобранный шаговый двигатель — это не просто деталь, это «сердце» вашего станка с ЧПУ, 3D-принтера или роботизированной системы...

Подробнее...

Дайте вашему двигателю интеллект! Профессиональные драйверы для точного позиционирования

24.10.2025 Статьи

  Устали от вибраций, пропущенных шагов и нестабильной работы оборудования?   Драйвер шагового двигателя — это не просто блок питания, а "мозг" всей системы позиционирования. Именно от драйвера зависит, насколько плавно, точно и...

Подробнее...

Шаговые двигатели: полное руководство по выбору

23.10.2025 Статьи

Шаговый двигатель — это электромеханическое устройство, которое преобразует электрические импульсы в дискретные механические перемещения. В отличие от обычных двигателей, он не вращается непрерывно, а перемещается на фиксированный угол (шаг) для...

Подробнее...

Линейные направляющие PMI: Полное руководство по выбору для инженеров и проектировщиков

23.10.2025 Статьи

    Линейные направляющие — это ключевой компонент в современном промышленном оборудовании, от которого зависят точность, скорость и долговечность станков, роботов и автоматизированных систем. Среди множества производителей тайваньская компания PMI (Precision Motion...

Подробнее...

Преимущества встраивания лазерных маркеров в поточные линии производства

18.08.2025 Статьи

  Современные производственные процессы требуют высокой скорости, точности и автоматизации. Встраивание лазерных маркеров в поточные линии позволяет предприятиям значительно повысить эффективность, снизить затраты и обеспечить безупречное качество маркировки. В этой статье...

Подробнее...

Применение лазерных маркеров: технологии и отрасли

18.08.2025 Статьи

Лазерные маркеры стали неотъемлемой частью современного производства, предлагая высокоточные решения для маркировки и гравировки различных материалов. В этой статье мы рассмотрим ключевые области применения лазерных маркеров, их преимущества и особенности...

Подробнее...

Лазерный маркер Rabbit Marker Fiber-30

16.07.2025 Статьи

  Высокотехнологичное решение для промышленной маркировки Rabbit Marker Fiber-30 — это современное волоконное лазерное оборудование для высокоточной маркировки металлов и пластиков. Наш станок обеспечивает высокую скорость и неизменно высочайшее качество обработки деталей...

Подробнее...

Профессиональная 3D фрезеровка на станках Carver SM Pro 1325 | Interlaser

16.07.2025 Статьи

Технология 3D фрезерной обработки: точность и возможности   Современное производство требует высокоточной обработки сложных поверхностей. Наш фрезерный центр оснащен промышленными станками Carver SM Pro 1325 с ЧПУ, которые обеспечивают высокую скорость и...

Подробнее...

Лазерная резка материалов: фанера, ПЭТ, кожа, поролон, полистирол, паронит

16.07.2025 Статьи

Лазерная резка — это высокоточный и эффективный метод обработки различных материалов, от фанеры и кожи до полистирола и паронита. Наше производство обеспечивает скорость до 8500 метров реза в сутки с...

Подробнее...